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ABSTRACT 

This piper compares Wolfe's quadrjLic programming algorithm with 

Cot tic and Dantxig's principle pivot method. It is shown that Wolfe's 

algorithm requires more operations. 
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In this paper H e ,.,ill compare loJolfe ' s quadratic prograiJUning 

algori thm with t he principle pivot method proposed by Cottle and 

Dantzig [3]. I n the firs t s ection we descri be the problem and define 

s ome nota tion. I n s ect i ons 2 and 3 the algorithms are brlefly describ ed 

and exampl es \-lorked out. Then in sect ion 4 we dis cuss the merits of 

each a l gorithm. 

No typographi cal dis tinction is made bct\veen vect ors and scalars . 

Matrices are designated by capital letters. The transpose of w is 

writt en w'. All vectors are column vectors. 

1. Problem Formulation The problem we wish to consider may be formulated 

as follows. Find x such that 

£<i> min( , + 1 'Dx) = C X - X 
xe:R 2 

where R = {xe:En; Ax ~ b, 

En be:Em ce: , 

X~ 0}, 

A is a mxn matrix and D is a nxn matrix. 

(1.1) 

We can assume without loss of generality that D is a symmetric matrix. 

If the region R is empty, then the problem (1.1) has no solution . 

If R contains a single point, then the problem has a trivial, unique 

solution. We will, therefore, assume that the interior of the region R 

is non-empty. 

Define the Lagrange function 

L(x, y, v) = c'x + t x'Dx- y'(Ax- b)- v'x (1.2) 

m n where ye:E , V£E • 

Under the assumptions made on R we know that the Kuhn-Tucker [5] conditions 
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are necessary.    That Is, x exist only If there exist vectoru y and v such 

that x, y, v satisfy 

c' + x'D - y'A -v'  - 0 

Ax - b > 0 

y'CAx - b) - 0, v'x - 0 

x ^ 0, y >, 0, v >_ 0. 

Solving these equations,eliminating v, rearranging and recalling that 

D* - D we have 

c + Dx - A'y i 0 

-b + Ax > 0 

y'C-b + Ax) - 0, x'Cc + Dx - A'y) • 0 

x i 0,  y i 0. 

We can express these conditions in a more compact way.    Put 

(1.3) 

>      (1.4) 

[j] •'■[.:]• H
 IJ-n. (1.5) 

Then (1.4) Is equivalent to what Cottle and Dantzig [3] call the Fundamental 

Problem. 

w ■ q + Mr 

W'E - 0 

w ^ 0, t >, 0 

«here M Is a (n+m)x(n+m) matrix, 

and     v, q, z cE 

1 (1.6) 

Ue shall be concerned with two different algorithms which can be used to 

solve the Kuhn-Tucker conditions as expressed in (1.6). 



2. Wolfe's Al gorithm The set of equations in (1.6) is linear except 

for w'z = 0. Wolfe's algorithm is a modification of linear programming 

algorithms to account for the equation w'z a 0. 

Make b ~ 0 in (1.4) and subtract and add the slack and surplus 

variables tj such that t ~ 0, tt~. Let G be the matrix [±oij] of coef­

n 
ficients of t. Now define the surplus vector 8 ~ 0, seE and rewrite 

(1.4) as 

c + Dx - A'y- s - 0 

··b +Ax - Gt • 0 

3 

(2.1) 
y' (-b + Ax) - o, x'(c + Dx- A'y) - 0 

x, 8 ~ 0 y, t > - 0. 

Or equivalently, 

[-~] + [~ -A' -I 

-~]nJ -m 0 0 

(2.2) 

[x, y, s, t] ~o. 

How using the definitions in (1.5) and putting w c [s, Gt] we have 

(2.3) 

w'z • 0 

w,;:. 0, z > 0 -
which is of course (1.6) reformatted. 

Now consider the problem 
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subject to 
(2.4) 

(M, - I, - q 

w ~ o, z ~ 0, u > o. = 

If the sol ution to (2.4) has u • 0 and at the same time we have w'z a 0, 

then we have solved (1.4) and hence (~.1) our original problem. 

Wolfe's algorithm is to solve (2.4) using a linear programming 

algorithm modified to ensure that w'z • 0 at all times. We can hold 

w'z • 0 if at each iteration we ensure that if one of the vectors asso-

ciated with wk or zk is in the basis then the other is not. 

The condition w'z • 0 guarantees that no more than (n+m) variables in 

(2.3) need be non-zero. Hence, the solution to (2.3) is one of the basic 

solutions to (2.4). In fact it can be shown that in spite of the require-

ment that w'z • 0, the linear programming algorithms still converge. (For 

example, see Hadley [4] pages 214-221.) 

Wolfe's algorithm requires that every iteration maintain w'z = 0, 

hence we must start with a basic feasible solution for which this is true. 

Since q has (n+m) components, if we put 

0 { ci s .. 
i 0 

c > 0 - i•· l, ••• ,n 

othendse, 

{

-c 
0 i 

u -
i 0 

c < 0 i•l, ••• ,n 

otherwise 
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and 

Gt0 ... - b. 

0 0 0 Then [z , w , u ] is an initial basic feasible solution to (2.4) which 

satisfies (2.3). 

Convergence is guaranteed (assuming no degeneracy) if D is positive 

definite. Hadley [4] describes a method due to Charnes [1] for solving 

the semidefinite case. Instead of using D we use (D + £1) for £ > 0 and 

arbitrarily small. Then (D + £1) is positive definite and we have 

convergence. 

We will now consider two examples. The first is positive definite 

and the second is positive semidefinite. However, both problems have unique 

solutions. 

The first problem we wish to consider is 

min xi + x~ - 8x1 - 10x2, 

subject to 

For this problem we have 

c • [ =:o] , D • (: ~] , A • (-3, - 2), b • (-6). 

And Wolfe's algorithm gives us (from 2.4) 

min u1 + u2 

subject to 

u 0 3 -1 0 · o 1 n r:J-[~~J 2 2 0 -1 0 0 
-2 0 0 0 -1 0 
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with an initial basic feasible solution 

(z0 , wO, uO) a (0, 0, 0 , 0, 0, 6, 8, 10). 

Tableaux I through IV are for the above problem. We see in tableaux 

I and III that we cannot apply the normal simplex rules for exchanges of 

basis vectors and lololfe' s modification comes into play. The optimal 

solution to this problem is [i, w, u]=£4/13, 33/13, 32/13, 0, 0, 0, 0, 0]. 

TABLEAU I: INITIAL TABLEAU 

zl z2 z3 wl w2 w3 ul u2 

2 0 3 -1 0 0 1 0 8 u1 

0 2 2 0 -1 0 0 1 10 u2 

0) -2 0 0 0 -0 0 0 -6 w3 

2 2 s -1 -1 0 0 0 18 

TABLEAU II 

0 -4/3 0 -1 0 -2/3 1 0 4 u1 

0 2 2 0 -1 0 0 1 10 u2 

1 2/3 0 0 0 1/3 0 0 2 z1 

0 2/3 5 -1 . -1 -2/3 0 0 14 

TABLEAU III 

0 -4/9 1 -1/3 0 -2/9 1/3 0 4/3 z3 

0 8 0 2/3 -1 4/9 -2/3 1 22/3 u2 

1 2/3 0 0 0 1/3 0 0 2 z1 

0 26/9 0 2/3 -1 4/9 -S/3 0 22/3 



TABLEAU IV 

0 0 1 -3/13 -2/13 - '2./13 

0 1 0 3/13 -9/26 2/13 

1 0 0 -2/13 -3/13 3/13 

0 0 0 0 0 0 

Our second example is 

2 min 2x2 - 2x1 - 3x2 

subject to 

x1 + 4x2 ~ 4 

xl + x2 ~ ~ • 

For this problem we have 

3/13 2/13 

-3/13 9/26 

2/13 -3/13 

-1 -1 

D • [0 OJ , A • [-1 -4] , b a [-4] 
0 4 -1 -1 -2 • 

32/13 z3 

33/13 z2 

4/l3 zl 

0 

Clearly, D is semidefinite. Our initial basic feasible solution is 
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[z0
, w0

, u0
] • [0, 0, 0, 0, 0, 0, 4, 2, 2, 3]. And the optimal solution is 

[z, w, uJ = [7/4, 1/4, o. 2, o. o. s/4, o. o. o]. 

This problem takes five iterations (Tableaux V thru X). Note that 

in Tableau VI we cannot enter z3 or z4 into the basis so that z1 must 

enter the basis even though the last row is 0. 
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TABLEAU V 

z1 z2 z3 z4 w1 w2 w3 w4 u1 u2 

0 0 . 1 1 -1 0 0 0 1 0 2 u1 

0 0 4 1 .o -1 0 ·0 0 1 3 u2 

-1 -4 0 0 0 0 -1 0 0 0 -4 w 3 

-1 -1 0 0 0 0 0 -1 0 0 -2 w4 

0 4 s 2 -1 -1 0 0 0 0 s 

TABLEAU VI 

0 0 1 1 -1 0 0 0 1 0 2 u1 

0 1 1 1/4 0 -1/4 0 0 0 1/4 3/4 z2 

8 0 4 1 0 -1 -1 0 0 1 -1 w 3 

-1 0 1 1/4 0 -1/4 0 -1 0 1/4 .-5/4 w4 

0 0 1 1 -1 0 0 0 0 -1 2 

TABLEAU VII 

0 0 1 1 -1 0 0 0 1 0 2 u1 

0 1 1 1/4 0 -1/4 0 0 0 1/4 3/4 z2 

1 0 -4 -1 0 1 1 0 0 . -1 1 z1 

0 0 8-3/4 0 3/4 1 -1 0 -3/4 -1/4 w4 

0 0 1 1 -1 0 0 0 0 -1 2 

TABLEAU VIII 

0 0 0 3/4 -1 1/4 1/3 -1/3 . 1 -1/4 23/12 u1 

0 1 0 0 0 0 1/3 -1/3 0 0 8/12 z., 
4. 

1 0 0 0 0 0 -1/3 4/3 0 0 4/3 z1 

0 0 1 @) 0 -1/4 -1/3 1/3 0 1/4 1/12 z3 

0 0 0 3/4 -1 1/4 1/3 -1/3 0 -1/4 23/12 



TABLEAU IX 

rl      z2      z3      r4     wl      W2 w3 W4 ul u2 

© 0   0-3 0-1   1 (4/31 -4/3 1 -1 5/3 i^ 

0   10 0   0   0   1/3 -1/.^ 0 0 8/12 z2 

10   0 0   0   0 -1/3 4/3 0 0 4/3 z1 

0   0   4 10-1 -4/3 4/3 0 1 1/3 *A 

0   0-3 0-1   1   4/3 -4/3 0 -I 5/3 

TABLEAU X 

0 0 -9/4  0 -3/4 3/4   1 -1 3/A -3/4 5/4 w3 

0.1  3/4  0  1/4 -1/4   0 0 -1/4 1/4 1/4 z2 

1 0   -3/4      0   -1/4    1/4         0 1 1/A -1/4 7/4 z1 

0011-100 0 1 0 2z 4 

0000000 0-1-1 
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3. .fbe Principle Pivot Method For convenience we repeat the Fundamental 

Problem. ·Find vectors w, z, such that 

w • q + Mz, 

w' z .. 0, (3.1) 

z ~ 0, w ~ 0 

n+m where M is a (n + m) square matrix and w, q, z € E . We have seen 

that this system (3.1) is equivalent to the Kuhn-Tucker conditions (1.4) 

and bas a unique solution if D is positive definite. 

n+m From (3.1) we have w'z a !i•l wizi = 0 which implies that each non-

ne~ative pair (w1 , z1) has at lea8t one zero component. We call (wi, zi) 

the complementary pair. 

A pivot is an operation on the equation w = q + Mz which exchanges 

the roles of wj and zk for some j and k. · We call (wj, zk) the pivotal pair. 

The pivot is accomplished by solving one of the (n+m) equations for zk in 

terms of zi' ifk and wj. We then eliminate the variable zk from the 

other (n+m) - 1 equations. The re~ult is a new system 

v v+Mvv W a q Z (3.2) 

in which the roles of the pivotal pair are interchanged, i.e., wj 

appears on the right and zk appears on the left in (3.2). The operation 

is not defined if mjk = 0. If in the pivotal pair, j = k, then it is 

called a ~omplementary pivot. A sequence of complementary pivots is a 

principle pivot. The reader will recognize the pivot operation as an 

iteration of the classic Gauss-Jordan reduction technique for solving 

linear equations. 

A basic solution to (3.2) is a solution with no more than (n+m) non-

zero variables. A basic solution to (3.2) which also satisfies (3.1) is 
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a complementary basic solution. 

Cottle and Dantzig [3] show that, under certain assumptions on 

the matrix M, a sequence of principle pivots on (3.2) starting from a 

basic solution to (3.2) will converge to _a _complementary basic solution 

to (3.1) in a finite number of iterations (assuming no degeneracy). This 

is the Principle Pivot Method. Convergence of this algorithm is proved 

in the case where M has positive principle minors [3]. If M is positive 

definite, then it has positive principle minors. In the case where M 

is positive semidefinite, some of the principle minors are zero. Cottle 

[2] has provided a modification of the principle pivot algorithm which 

converges if M is positive semidefinite to a solution or an indication 

of an unbounded solution. The proofs for convergence depend on the ob­

servations that the properties of "positive principle minors" and 

"positive (semi)definite" remain invariant under the operation of principle 

pivot. 

To translate the requirements on M to equivalent requirements on D 

we observe that if D is positive definite or positive semidefinite, then 

M is positive semidefinite since 

z'Mz "" 
(x' ' y' ) [: -: '] [:] 

= x'Dx + (y'Ax - x'A'y) 

a x'Dx. 

Hence, if D is positive (semi)definite we know that the algorithm will 

converge or give an indication of an unbounded solution. 

We now consider the examples solved by lololfe' s method in section 2. 

We will usc the tableau suggested by Cottle (2]. The first problem is 

in tableaux XI through XIV and the second problem in tableaux XV through 

XVIII. 
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TABLEAU XI TABLEAU XII 

z1 z2 z3 w3 z2 z3 

w1 -8 2 0 3 w1 -4 0 -4/3 0 
w2 -10 0 2 2 w2 -10 0 2 2 

w3 6 e -2 0 z1 2 -0 -2/3 0 

TABLEAU XIII TABLEAU XIV 

w3 z2 w1 w3 w2 "' 1 

z3 4/3 0 4/9 -1 z3 32/13 0 0 -1 

w2 -22/3 0 8 0 z2 33/13 0 -1 0 

z1 2 -1 -2/3 0 z1 4/13 -1 0 0 

TABLEAU XV TABLEAU XVI 

z1 z2 z3 z4 w4 z2 z3 z4 

w1 -2 0 0 1 1 w1 -2 0 0 1 0 
w2 -3 0 4 4 1 w2 -3 0 4 4 1 

w3 4 -1 -4 0 0 w3 2 0 - 3 0 0 

w4 2 8-1 0 0 z1 2 -1 -1 0 0 

TABLEAU XVII TABLEAU XVIII 

w4 z2 z3 w1 w4 w2 z3 w1 

z4 2 0 0 -1 -1 z4 2 0 0 -1 -1 

w2 -1 0 8 3 0 z2 1/4 0 -1 -3/4 0 

w3 2 0 -3 0 0 w3 5/4 0 0 4/4 0 

z1 2 -1 -1 0 0 z1 ., I 4 -1 0 3/4 0 
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4. Compar::..son Both of the algorithms described in sections 2 and 3 are 

adjacent extreme point methods. That is, each algorithm starts at an ex-

treme point of a closed convex set and proceeds systematically by an 

exchange of basis vectors to examir,e an ~dj_acent extreme point. · 

If we use the sim~:ex algorithm in Wolfe's technique then we see 

that each iteration involves a pivot operation. However, the matrix on 

which this operation is performed is at least (n+m)x2(n+m) 1 in the case 

of Wolfe's algorithm and (n+m)x(n+m) in the principle pivot algorithm. 

This means four times, or more, as many operations for Wolfe's method 

per iteration and at least twice the storage requirement. The revised 

simplex method offers some improvemen~ in Wolfe's algorithm but it is not 

significant enough to balance the scales in the direction of Wolfe's 

method. 

We have already observed that both algorithms converge under the 

same circumstances. This is due primarily to the use of the Kuhn-Tucker 

conditions in establishing the problem. However, the semidefinite case 

may have ail unbounded sol ution. The principle pivot method with Cottle's 

modificaticn detects this situation. Wolfe's algorithm with Charnes' 

modificati·Jn, however changes the problem itself. It will converge even 

though th'! solution is unbounded. As an example, consider 

11dn xf - 2x1 - 3x2, 

subject. to 

X~ 0. 

This problem has an unbounded solution at (1, x2). However, by adding E~O 

we have 

1 This number is increased by n using the method described in this paper 
for choosing an ini.tial basic feasible solution. Hadley [4] describes 
an alternative method which requires only 2(n+m) columns. However, it 
involves finding the inverse of the basis matrix. 
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subject to x ~ 0. 

1 
Which has a solution at (1/(1 + 2 £), 3/£). 

Clearly, as £ ~ 0 we see that the solution is unbounded. The problem 

·of course is that we may not recognize it as unbounded in practice if £ is 

too large. (Because of the capacity of a computer for example.) Hith care 

this disadvantage can be overlooked. 

One interesting difference betto1een the tt-1o methods is that in \volfe' s 

method the solution at each iteration is feasible. However, in the principle 

pivot method the solution is not feasible until convergence. This is not 

very important since it would be useful only if one stopped the iterations 

before optimality was reached. Because of the relative speeds, this is more 

likely to happen with Wolfe's algorithm anyway. 

We have seen that Wolfe's method requires at least four times as many 

operations per iteration as the principle pivot method. The principle pivot 

method should require no more than (n+m) iterations while Wolfe's will 

generally require from (n+m) to 2(n+m) iterations. From this observation, 

one easily concludes that the principle pivot method is faster than \volfe's 

and hence superior since it solves the same class of problems as Wolfe's. 
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